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I. INTRODUCTION

Fragmentation is a fundamental stochastic process
with a variety of applications ranging from geology [1]
and fracture [2] to the breakup of liquid droplets [3] and
atomic nuclei [4, 5]. Fragmentation processes are also
relevant to spin glasses, Boolean networks and genetic
populations [6–11].
This study is motivated by conditional fragmentation

processes where fragmentation may not proceed indefi-
nitely. Instead, whether a fragment undergoes further
breakage is a function of its characteristics. Examples
include segmentation of sequences in algorithms such as
genome reconstruction [12–14], DNA segmentation [15–
17], and search algorithms [18] on the one hand and
collision-induced fragmentation of solid objects [19–24]
on the other hand. These applications lead to stochas-
tic fragmentation processes where not only the way by
which fragments are produced, but also the number of
fragmentation events is subject to a random process.
In the simplest stochastic fragmentation process, one

starts with a fragment and breaks it into two pieces.
With probability p, a newly formed fragment remains
unstable, i.e, it continues to participate in fragmenta-
tion events, while with probability q = 1 − p, it be-
comes stable, and is never fragmented again. The pro-
cess is repeated for all unstable fragments until all frag-
ments become stable. For this simple process, we show
that the final length density, P (x), is purely algebraic,
namely P (x) = 2qx−2p [25]. Similar scale free behavior
was observed in other fragmentation processes [23, 26].
Stochastic fragmentation also exhibits intriguing statis-
tical characteristics including moments which are non-
self-averaging, essential singularities in the distribution
of the moments, and an infinite set of singularities in the
distribution of the largest and the smallest fragments.
In this paper, we study statistical properties of stochas-

tic fragmentation processes. In Sec. II, we introduce the
stochastic fragmentation model and derive the fragment
length density P (x). We also consider generalizations
to size dependent fragmentation densities and fragmen-

tation probabilities, and obtain the exponent underlying
the algebraic behavior of P (x) as a root of a transcen-
dental equation. In Sec. III, we show that the stochastic
fragmentation process is non-self-averaging. Specifically,
the moments Yα =

∑

i x
α
i exhibit significant sample-to-

sample fluctuations. In Sec. IV, we study extremal char-
acteristics such as the distribution of the largest and the
shortest fragment, and show that both the extremal dis-
tributions and the distribution of the moments are char-
acterized by an infinite set of progressively weaker singu-
larities. In Sec. V, we present an application to random
sequential adsorption processes, and we summarize this
work in Sec. VI.

II. THE MODEL

In the basic stochastic fragmentation process, we start
with the unit interval, which is considered to be unstable.
This interval is fragmented into two pieces of length l and
1− l, where l is drawn from a uniform probability density
ρ(l) = 1. The newly formed fragment remains unstable
with probability p, and with probability q ≡ 1 − p it
becomes stable and does not undergo further fragmenta-
tion. The process is iterated for unstable fragments until
all fragments become stable.
The average total number of stable fragments, 〈N〉,

can be directly evaluated. Consider a fragment pro-
duced in the first fragmentation event. With probability
q it is stable, and consequently, only a single fragment
is produced; otherwise, the process is repeated. Hence
〈N〉 = 2(q + p〈N〉), yielding

〈N〉 =
{

2q/(1− 2p), if p < 1/2;
∞, if p ≥ 1/2. (1)

The average total number of fragments diverges as the
probability p approaches the critical point pc = 1/2, re-
flecting the critical nature of the corresponding branching
process [27].
Next, consider the fragment length density, P (x), of

stable fragments of length x. The recursive nature of the
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process can be used to obtain the governing equation for
the fragment length density

P (x) = 2

[

q + p

∫ 1

x

dy

y
P

(

x

y

)]

. (2)

The first term accounts for stable fragments produced
at the first generation, and the second term describes
creation of an x-fragment from a larger y-fragment.
Equation (2) can be solved by employing the Mellin

transform technique. Let

M(s) ≡
∫

dxxs−1P (x). (3)

Hereinafter, integration with unspecified limits is car-
ried over the unit interval. Equations (2) and (3) yield
M(s) = 2s−1 [q + pM(s)], and consequently, the Mellin
transform of the length density reads

M(s) =
2q

s− 2p . (4)

Note that the total length is conserved, M(2) = 1, and
that the total number of stable fragments, M(1) = 〈N〉,
is consistent with Eq. (1).
The length density can be obtained by inverting the

Mellin transform

P (x) = 2q x−2p. (5)

Remarkably, the length density is purely algebraic over
the entire range 0 < x < 1. Generally, given an al-
gebraic divergence near the origin, P (x) ∼ x−γ , length
conservation provides the upper bound γ < 2, and as
0 < γ = 2p < 2, the entire range of possible divergences
is realized by tuning p.
Interestingly, scale free distributions were also found

for a dual stochastic aggregation process where aggre-
gates may turn stable after each aggregation event. In
that case, the large size tail of the distribution decays al-
gebraically [28]. We also note that algebraic distributions
have been observed in a number of impact fragmentation
experiments involving rods, spheres, bricks, etc., with the
corresponding decay exponents typically ranging between
1 and 2 [19–21].
The fragment length density is not altered as the crit-

ical point pc =
1
2 is passed. Nevertheless, this point is

characterized by a unique property. Starting from an in-
terval of length L0, we arrive at the generalized form of
Eq. (5):

P (x) = 2qL2p−10 x−2p. (6)

Hence, at the critical point, P (x) becomes independent
of the initial interval length L0.
In the above basic model both the fragmentation den-

sity and the fragmentation probability were independent
of the fragment length. In the following, we show that
even when these functions become length-dependent,
P (x) remains algebraic in the small size limit.

A. Arbitrary fragmentation density ρ(l)

Consider a fragmentation process in which an inter-
val is broken into two fragments of relative lengths l
and 1 − l with an arbitrary fragmentation density ρ(l).
This density satisfies the constraint

∫

dl ρ(l) = 1 follow-
ing from normalization and the symmetry requirement
ρ(l) = ρ(1− l). The governing equation for the fragment
length density reads

P (x) = 2qρ(x) + 2p

∫ 1

x

dy

y
ρ(y)P

(

x

y

)

. (7)

The Mellin transform (3) of the length density satisfies
M(s) = 2µ(s) [q + pM(s)], and consequently

M(s) =
2q

µ−1(s)− 2p , (8)

where µ(s) ≡
∫

dl ls−1ρ(l) denotes the Mellin transform
of the fragmentation density ρ(l). The symmetry of the
fragmentation density implies µ(2) = 1/2 and therefore
M(2) = 1, which confirms the conservation of length.
The normalization condition implies µ(1) = 1, which con-
firms that the average total number of fragments is given
by M(1) = 〈N〉, in agreement with Eq. (1).
The Mellin transform shows that the fragment length

density is scale free only when the fragmentation density
is uniform. Nevertheless, the algebraic small-size behav-
ior remains robust. Indeed, Eq. (8) suggests that the
most important property of M(s) is a simple pole whose
location s = γ is found from relation 2pµ(γ) = 1. This
simple pole implies a power-law asymptotics of the frag-
ment length density

P (x) ' Ax−γ (9)

as x → 0. The exponent γ can be determined from the
entire fragmentation density ρ(x) via the relation

2p

∫

dl lγ−1ρ(l) = 1. (10)

The prefactor in Eq. (9) is A ≡ [qµ(γ)]/[pµ′(γ)]; it is sim-
ply the residue of the pole at s = γ.
At the critical point pc = 1/2 one has γ = 1, indepen-

dent of the fragmentation density ρ(l). The relation (10)
also shows that a generic behavior γ → 2 occurs if the
probability of becoming stable vanishes, i.e., if p → 1.
In the complementary p→ 0 limit, the small-size behav-
ior of ρ(l) determines the small fragment distribution. In
particular, if ρ(l) ∼ l−r in the limit l→ 0, Eq. (10) shows
that γ → r as p → 0. Hence, in this case the restricted
exponent range r < γ < 2 emerges by tuning p.
As an illustration, consider the fragmentation density

ρ(l) = B[l(1 − l)]δ−1, with B = Γ(2δ)/Γ2(δ) ensuring
proper normalization. The exponent γ is determined
from Eq. (10) to give

2p
Γ(2δ) Γ(γ + δ − 1)
Γ(δ) Γ(γ + 2δ − 1) = 1. (11)
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This relation shows that the exponent γ always belongs
to the range 1−δ < γ < 2. In the extreme case of δ → 0,
the decay exponent is concentrated near γ = 1. Such
universal P (x) ∼ x−1 behavior is empirically observed
in DNA segmentation algorithms. In the other extreme
δ → ∞, the exponent simplifies to γ = 1 + ln 2p. Note
also that explicit results for both P (x) and the exponent
γ can be obtained for integer δ’s. The case of δ = 1
corresponds to the uniform density. For δ = 2, the Mellin
transform reads µ(s) = 6/(s+1)(s+2), and from (8) we
find that the fragment density is a combination of two
power laws:

P (x) =
12q√
1 + 48p

(

x
3−
√

1+48p

2 − x
3+
√

1+48p

2

)

. (12)

Generally, the length density is a linear combination of δ
power laws for all integer δ’s.

B. Arbitrary fragmentation probability p(x)

We now discuss the complementary generalization, in
which the probability p(x) that a new fragment remains
unstable depends on the fragment size x. This is rele-
vant for impact fragmentation and DNA segmentation
where fragments have an intrinsic size scale below which
the fragmentation probability becomes negligible. For
an arbitrary fragmentation probability p(x) the govern-
ing equation reads

P (x) = 2

[

1− p(x) +

∫ 1

x

dy

y
p(y)P

(

x

y

)]

. (13)

Consequently, the Mellin transform of the length density
admits the general solution

M(s) =
2

s

1− sσ(s)

1− 2σ(s) (14)

where σ(s) ≡
∫

dxxs−1p(x) is the Mellin transform of
the probability p(x).
The small size tail is determined by the poles of M(s).

When the condition 2σ(0) > 1 is satisfied, M(s) has a
simple pole at s = γ, and therefore, the small size behav-
ior remains algebraic as in Eq. (9). The corresponding
exponent γ is determined from 2σ(γ) = 1, or explicitly

2

∫

dxxγ−1 p(x) = 1, (15)

and the prefactor A = [γ−2]/[2γσ′(γ)] equals the residue
at s = γ. Equation (15) is a transcendental equation,
and the details of the function p(x) in the entire range
0 < x < 1 determine the exponent γ. This situation is
reminiscent of the behavior found when the fragmenta-
tion probability along the interval was not uniform.
In the complementary case of 2σ(0) < 1, Eq. (14)

shows thatM(s) has a simple pole at s = 0. This implies

that the length density is regular in the small size limit:
P (x) → 2/[1 − 2σ(0)] as x → 0. In the marginal case
2σ(0) = 1, we find M(s) ∼ s−2, which leads to a loga-
rithmic divergence of the length density, i.e., P (x) ∼ ln 1

x
as x→ 0.
As an illustration, consider a solvable example: the

fragmentation probability p(x) = xλ with λ > 0. In
this case we have σ(s) = 1/(s + λ), and consequently
M(s) = 2λ/[s(s+λ−2)]. Inverting the Mellin transform
M(s) gives the fragment length density

P (x) =











2λ
2−λ

(

x−(2−λ) − 1
)

0 < λ < 2;

4 ln 1
x λ = 2;

2λ
λ−2

(

1− xλ−2) 2 < λ.

(16)

Again, the range 0 < γ < 2 becomes accessible.
Hence, the algebraic small size divergence is robust as

it extends to situations where either the fragmentation
density or the fragmentation probability are size depen-
dent. The entire form of these functions is needed to
calculate the corresponding power-law exponent.
In the rest of this paper, we restrict ourselves to the

basic model where the fragmentation density is uniform,
ρ(x) = 1, and the fragmentation probability p(x) ≡ p is
size independent.

III. THE MOMENTS

The fragment size distribution represents an average
over infinitely many realizations of the stochastic frag-
mentation process, and hence, it does not characterize
sample-to-sample fluctuations. In this section, we show
that fluctuations do not vanish in the thermodynamic
limit, and therefore, the process is non-self-averaging. We
investigate sample-to-sample fluctuations by computing
the moments Yα defined by

Yα =
∑

i

xα
i , (17)

where the sum runs over all fragments in a given realiza-
tion. These moments have proved useful in a variety of
contexts including spin glasses, random maps, and ran-
dom walks [29, 30]. The fact that these moments have
non-trivial probability distributions is a signature of lack
of self-averaging.
Before we attempt to derive these probability distri-

butions, we start with the simpler task of computing the
expected values of the moments 〈Yα〉 and their correla-
tions 〈YαYβ〉. For integer α, 〈Yα〉 is the probability that
α randomly chosen points in the unit interval belong to
the same fragment. Similarly, for integer α and integer
β, 〈YαYβ〉 is the probability that among α + β points
chosen at random, the first α points all lie on the same
fragment, and the last β points all lie on another (possi-
bly the same) fragment.
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The expected value of Yα satisfies

〈Yα〉 = (q + p〈Yα〉)
∫

dy [yα + (1− y)α] . (18)

The q-term corresponds to the situation where a first gen-
eration fragment becomes stable while the second term
describes the complementary situation. Equation (18)
gives

〈Yα〉 =
{

2q/(α+ 1− 2p) α > 2p− 1;
∞ α ≤ 2p− 1. (19)

Since the single point averages are simply the mo-
ments, 〈Yα〉 = M(α + 1), in agreement with Eq. (4).
Higher-order averages cannot be computed from the frag-
ment size density. However, one can obtain exact expres-
sions for higher averages from relations similar in spirit
to Eq. (18). For instance, 〈YαYβ〉 satisfies

〈YαYβ〉 = 2(q + p〈YαYβ〉)
∫

dy yα+β (20)

+ 2(q + p〈Yα〉)(q + p〈Yβ〉)
∫

dy yα(1− y)β .

The expected values 〈Yα〉 and 〈Yβ〉 are already known,
and the correlation 〈YαYβ〉 is found from (20) to give

〈YαYβ〉 = 2
q + C(α, β)(q + p〈Yα〉)(q + p〈Yβ〉)

α+ β + 1− 2p (21)

if α, β, α+ β > 2p− 1, and 〈YαYβ〉 =∞ otherwise. Here

we used the shorthand notation C(α, β) = Γ(α+1)Γ(β+1)
Γ(α+β+1) .

Equation (21) shows that 〈YαYβ〉 6= 〈Yα〉〈Yβ〉 and,
in particular, 〈Y 2

α 〉 6= 〈Yα〉2. Hence, fluctuations in Yα

do not vanish in the thermodynamic limit, which im-
plies that the stochastic fragmentation process is non-
self-averaging. This means that statistical properties ob-
tained by averaging over all realizations are insufficient
to probe sample-to-sample fluctuations. Lack of self-
averaging was also found in fragmentation processes that
exhibit a shattering transition [31–33].
It is possible to evaluate higher-order averages such as

〈Y n
α 〉. However, even for small n these averages become

quite cumbersome and not terribly illuminating. Instead,
one might try to obtain the distribution, Qα(Yα), of pos-
sible outcomes of the moments Yα. Let us first consider
the fragment number distribution Q0(N) (the zeroth mo-
ment equals the number of fragments, Y0 = N), which
can be determined analytically. The minimal number of
fragments is produced when both of the first generation
fragments are stable, and hence, Q0(2) = q2. Similarly
for N ≥ 3 we obtain the recursion relation

Q0(N) = 2pqQ0(N − 1) (22)

+ p2
∑

N1+N2=N

Q0(N1)Q0(N2),

where the total number of fragments N is obtained in
various ways from a smaller number of fragments that

appear after fragmentation of the two first generation
fragments. Specifically, if exactly one of the first genera-
tion fragments is unstable, it should produce N−1 stable
fragments. If both of the first generation fragments are
unstable, they can produce N1 and N2 fragments, re-
spectively, subject to the constraint N1 +N2 = N . This
explains the right-hand side of Eq. (22).
Equation (22) can be solved by introducing the gen-

erating function Q0(z) ≡
∑

N≥2Q0(N)z
N , which satis-

fies p2Q20(z) − (1 − 2pqz)Q0(z) + q2z2 = 0. Solving this
quadratic equation yields the generating function

Q0(z) =
1− 2pqz −√1− 4pqz

2p2
. (23)

Expanding Q0(z) in powers of z gives

Q0(N) =
Γ
(

N − 1
2

)

Γ
(

1
2

)

Γ(N + 1)

(4pq)N

4p2
. (24)

At the critical point, pc = 1/2, the number distribution
decays algebraically in the large N limit:

Q0(N) ∼ N−3/2. (25)

In the vicinity of pc = 1/2, the number distribution at-
tains the scaling form

Q0(N) ∼ N−3/2 exp
[

−4N(∆p)2
]

, (26)

where ∆p = pc − p. Hence, below the critical point, the
tail of the number distribution is exponential.
The probability that an infinite number of fragments

is produced is given by

Q0(∞) = 1−
∞
∑

N=2

Q0(N) = 1−Q0(z = 1). (27)

Below the critical point, the number of fragments re-
mains finite, i.e., Q0(∞) = 0. In the complementary
case of p > pc, with finite probability, an infinite number
of fragments is produced

Q0(∞) = 1−
q2

p2
. (28)

The case α = 0 is unique in the sense that the vari-
able Y0 = N is discrete. Another special case is α = 1
when length conservation dictates Y1 = 1, and therefore
the distribution is trivial: Q1(Y1) = δ(Y1 − 1). Gen-
erally, the distribution Qα(Yα) is highly non-trivial. In
the range 0 < α < 1 we of course have Yα > 1, i.e.,
Qα has support in the interval (1,∞), as in the case of
α = 0. Equation (28) then suggests that for p > pc the
distribution Qα(Yα) should have a singular component
at Yα =∞.
In the following, we focus on the more interesting case

of α > 1. Here, the inequality Yα < Y1 = 1 implies
that the distribution Qα(Yα) has support on the interval
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(0, 1). If both of the first generation fragments happen
to be stable, then Yα = xα + (1 − x)α, where x is cho-
sen uniformly in the unit interval. Both fragments are
stable with probability q2, and the corresponding con-
tribution to Qα(Yα), which we denote by Πα(Yα), reads
Πα(Yα) = 2q

2 dx
dYα
, where x is the greater of the two roots

of equation Yα = xα+(1−x)α (the factor 2 accounts for
the smaller root). Although it is generally impossible to
express the above formula solely in terms of Yα, in some
special cases one can determine Πα(Yα) explicitly, e.g.,
Π2(Y2) = q2(2Y2 − 1)−1/2, Π3(Y3) = q2(3Y3 − 3/4)−1/2;
generally, Πα(Yα) ∼ (Yα − 21−α)−1/2.
Note that the distribution Π2(Y2) has a singularity at

Y2 = 1/2, which obviously implies a singularity of Q2(Y2)
at the same point. To understand the origin of this singu-
larity, notice that when the process ends with two stable
fragments, then Y2 = x2+(1−x)2 ≥ 1/2. Therefore, the
behavior of Q2(Y2) for the case of Y2 < 1/2 is not affected
by realizations with two final fragments, and this explains
the singularity at Y2 = 1/2. If the process ends with three
stable fragments, then Y2 = x21+x22+(1−x1−x2)

2 ≥ 1/3.
Similarly, if the process ends with k stable fragments,
then Y2 ≥ 1/k. Hence, we anticipate that the distri-
bution Q2(Y2) has singularities at Y2 = 1/k for integer
k ≥ 2. Similar singularities underlie distributions of mo-
ments in a number of random processes, including ran-
dom walks, spin glasses, random maps, and random trees
[7, 8, 29, 30].
A straightforward generalization of the above argu-

ment suggests that for arbitrary α > 1, the distribution
Qα(Yα) possesses singularities at Yα = k1−α. The ex-
istence of these infinitely many singularities shows that
analytical determination of the distribution Qα(Yα) is
hardly possible. Indeed, Qα(Yα) satisfies the difficult in-
tegral equation

Qα(Yα) = Πα(Yα) (29)

+ 2pq

∫

dl

(1− l)α
Qα

(

Yα − lα

(1− l)α

)

+p2
∫ Yα

0

dZ

∫

dl

lα(1− l)α
Qα

(

Z

lα

)

Qα

(

Yα − Z

(1− l)α

)

.

Equation (29) has been derived by repeating the steps
used in the derivation of (22). The first (second) term on
the right-hand side of Eq. (29) corresponds to the case
where two (one) of the first generation fragments are sta-
ble. The third convolution term describes the alternative
case when both of the first generation fragments are un-
stable. Note that in addition to the recursive nature of
the process, we have employed extensivity, i.e., 〈Yα〉 ∝ lα,
in an interval of length l.
In order to study the small-Yα behavior of the distri-

bution, we employ the Laplace transform method. From

Eq. (29), Rα(λ) ≡
∫ 1

0
dYα e−λYαQα(Yα) obeys

Rα(λ) = p2
∫ 1

0

dl Rα [λl
α]Rα [λ(1− l)α] + . . . . (30)

0 0.2 0.4 0.6 0.8 1
Y2

0

2

4

6

8

10

Q
2(

Y
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FIG. 1: The distribution of the second moment, Q2(Y2) versus
Y2 ≡

∑

i
x2

i , from numerical simulations with p = 0.4.

In Eq. (30), we do not write explicitly the Laplace trans-
form of the first two terms of Eq. (29), because these
two terms become negligible when Yα → 0. The Yα → 0
asymptotics of Qα(Yα) is reflected by the λ→∞ asymp-
totics of Rα(λ). We argue that Rα(λ) ∼ exp(−Aλω)
with ω = 1/α. Assuming that αω > 1, the above
stretched exponential form of Rα(λ) shows that the prod-
uct Rα [λl

α]Rα [λ(1− l)α] would reach a maximum that
greatly exceeds Rα(λ) at l = 1/2, in contradiction with
Eq. (30). Alternatively, if αω < 1, the above prod-
uct would reach its maximum at l = 0 and l = 1.
Then, the integral on the right-hand side of Eq. (30)
would become 2Rα(λ)

∫

dl Rα [λl
α] ∝ λ−1/αRα(λ), in

contradiction with Eq. (30). Therefore, we conclude that
Rα(λ) ∼ exp

(

−Aλ1/α
)

as λ→∞. This behavior implies
that the distribution Qα(Yα) vanishes according to

Qα(Yα) ∼ exp
(

−BY
− 1
α−1

α

)

(31)

as Yα → 0. Therefore, the distribution Qα(Yα) has an es-
sential singularity at the origin, which completes a count-
able set of algebraic singularities located at Yα = k1−α

with k = 2, 3, . . .

We performed Monte Carlo simulations of the stochas-
tic fragmentation process. Hereinafter, we present sim-
ulation results for a representative case of p = 0.4. The
data corresponds to an average over 5×1012 realizations.
Figure 1 shows the probability distribution of the second
moment. The distribution exhibits pronounced singu-
larities at Y2 = 1/2 and Y2 = 1/3, while the following
singularities are less visible. One can verify the existence
of further singularities by differentiating Q2(Y2). Figure
2 displays the essential singularity at the origin.
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FIG. 2: The small size tail of the distribution of the second
moment. Shown is Q2(Y2) versus 1/Y2.

IV. EXTREMAL CHARACTERISTICS

Extremal properties can be viewed as an additional
probe of sample-to-sample fluctuations. Moreover, they
are interesting on their own as they arise in many prob-
lems of mathematics, physics, and computer science [34–
40]. The largest fragment is an important extremal char-
acteristic. Obviously, when x ≥ 1/2, the size distribution
L(x) of the largest fragment equals the length density,
L(x) = P (x) = 2q x−2p. In the complementary case of
x < 1/2, L(x) satisfies

L(x) = 2qpL−

(

x

1− x

)

+ 2p

1
∫

1−x

dy

y
L

(

x

y

)

(32)

+ 2p2
1−x
∫

x

dy

y
L

(

x

y

)

L−

(

x

1− y

)

,

where L−(u) ≡
∫ u

0
dv L(v). The first term on the right-

hand side of Eq. (32) describes the situation where the
unit interval is fragmented into two intervals of lengths
x and 1 − x, and where the smaller fragment is stable
and the larger fragment is unstable (hence the factor
qp). The latter L− factor guarantees that subsequent
fragmentation of the unstable interval does not lead to a
longer fragment. If one of the first generation fragments
is shorter than x, then only the longest first generation
fragment contributes, which leads to the second term on
the right-hand side of Eq. (32). The next term describes
the situation where both of the first generation fragments
are longer than x, so the longest fragment can result from
breaking any of the two fragments. The factor L− guar-
antees that the longest fragment of length x comes from
the corresponding first generation fragment, and the fac-
tor p2 guarantees that both of the first generation frag-

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

L
(x

)

FIG. 3: The size distribution of the longest fragment.

ments are unstable.
Figure 3 shows that L(x) is discontinuous at x = 1/2.

This discontinuity can be understood by noting that L(x)
obeys different equations for x > 1/2 and x < 1/2, and
hence it loses analyticity at the boundary. One can con-
struct the entire solution recursively. We already know
that L(x) = 2q x−2p for x > 1/2. Inserting this result
into the right-hand side of Eq. (32) leads to an integral
equation for L(x) in the interval 1/3 < x < 1/2. Solv-
ing that equation one finds L(x). We do not quote the
cumbersome solution and only note that the amplitude of
the discontinuity is 2q2. Then we can use the solution for
x > 1/3 to determine L(x) in the interval 1/4 < x < 1/3,
and so on. Hence, L(x) should possess an infinite set of
singularities at x = 1/k, which become weaker as k in-
creases. One can also understand why L(x) is discontin-
uous at x = 1/2 by considering the p = 0 case where the
distribution becomes a step function L(x) = 2θ(x− 1

2 ).
Consider now the complementary extremal charac-

teristic — the shortest-segment size distribution S(x).
Clearly, S(x) = 0 for x > 1/2. If x < 1/2, one easily finds
S(x) = 2θ( 12 −x) in the special case of p = 0. To proceed
in the general case, we first note that, if the unit interval
is divided into N fragments, the shortest fragment must
obey xmin ≤ 1/N . Hence 1/3 < x < 1/2 implies that the
unit interval has been divided just once, i.e., both of the
first generation fragments are stable. This shows that
S(x) = 2q2 when 1/3 < x < 1/2. Finally, for x < 1/3
the shortest size distribution S(x) obeys

S(x) = 2q2 + 2qpS+

(

x

1− x

)

(33)

+ 2p

1−x
∫

x

dy

y
S

(

x

y

)[

q + pS+

(

x

1− y

)]

,

where S+(u) =
∫ 1

u
dv S(v). The first term on the right-
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FIG. 4: The size distribution of the shortest fragment.

hand side of Eq. (33) describes the situation where both
of the first generation fragments are stable. The second
term corresponds to the case where the smaller first gen-
eration fragment of length x is stable while the longer
fragment is unstable, with the S+ factor ensuring that
subsequent fragmentation of this longer fragment does
not produce a fragment shorter than x. The last term
describes various situations that are possible if both of
the first generation fragments are longer than x.
We cannot obtain an analytical expression for S(x)

over the entire length range, because in every interval
( 1k ,

1
k+1 ) a different analytical expression holds. In prin-

ciple, however, one could determine S(x) recursively. For
instance, we already know S(x) in the first two regions.
Inserting those expressions into Eq. (33) yields

S(x) = 2q2 + 4pq3
(

1

2
− x

1− x
+ ln

1− x

2x

)

(34)

in the third region 1/4 < x < 1/3. Clearly, S(x) pos-
sesses an infinite set of singularities at x = 1/k.
Figure 4 shows S(x) for x < 1/2 and p = 0.4. One

can see the plateau region 1/3 < x < 1/2, and the value
of S(x) in this region agrees with the theoretical predic-
tion S(x) = 2q2. The divergence in the small size limit
is consistent with the power law behavior: S(x) ∼ x−δ

as x → 0. Inserting this guess into Eq. (33) leads to a
self-consistent value of the exponent δ = 2p. Numerical
simulations show that S(x) slowly approaches the pre-
dicted behavior for the case p = 0.4 (see Fig. 5).
In deriving the relation δ = 2p, we have implicitly as-

sumed that the shortest-segment size distribution is non-
singular. This is indeed the case when p ≤ pc. For p > pc,
however, the distribution S(x) should additionally con-
tain the singular component

Ssing(x) = ∆δ(x) (35)

10
−4

10
−3

10
−2

10
−1

x

10
0

10
1

10
2

S(
x)

simulation
slope=−0.8

FIG. 5: The small size tail of the size distribution of the
shortest fragment for p = 0.4. A line of slope −0.8 is shown
for reference.

with ∆ = 1− (q/p)2, reflecting that with finite probabil-
ity, the total number of fragments is infinite, see Eq. (28).
A more direct way to derive the same result is to note

that ∆, the probability that xmin = 0, satisfies the re-
lation ∆ = 2pq∆ + p2[1 − (1 − ∆)2]. Indeed, the first
term describes the situation when exactly one first gen-
eration fragment is unstable while the second term de-
scribes the situation when both of the first generation
fragments are unstable. By solving the above equation
we find two solutions, ∆ = 0 and ∆ = (2p − 1)/p2. The
first solution applies when p < pc; the second solution
applies when p > pc and agrees with Eq. (35). In or-
der to investigate the small-size asymptotics of S(x), we
write S(x) = ∆δ(x) + S(x) and assume that the contin-
uous part follows the power law behavior, S(x) ∼ x−δ as
x→ 0. Substituting this into Eq. (33) and balancing the
dominant terms yields δ = 2q. To summarize, different
behaviors characterize the small size tail of the length
distribution of the shortest segment:

S(x) ∼
{

x−2p p < 1/2;
x−2q p > 1/2.

(36)

V. APPLICATION TO RANDOM SEQUENTIAL

ADSORPTION

Random sequential adsorption (RSA) processes [41]
have been applied to a wide range of chemical, biological,
and physical processes. Examples include binding of pro-
teins to surfaces [42, 43], genome sequencing [12–14], and
granular compaction [44, 45]. In one dimension, k-mers
are deposited (with a uniform rate) onto a linear lattice,
and the deposition events are successful only when all k
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sites are empty. Eventually, the system reaches a jam-
ming state where no further deposition events are possi-
ble. Basic quantities of interest are the jamming density,
ρ∞, and its dependence on the initial concentration ρ0,
as well as the gap size distribution.
Adsorption can be viewed as a fragmentation process,

and the above stochastic fragmentation process general-
izes RSA to situations where the gaps between the ad-
sorbed particles may become passive with probability p
after each deposition event. Stable gaps can no longer be
deposited onto, or in other words, fragmented. In the fol-
lowing, we study this RSA problem both in discrete and
continuous space. We show that the limiting density of
passive gaps is proportional to the fragment length den-
sity obtained above. In the interesting limit of vanishing
initial concentrations, ρ0 → 0, the final jamming density
vanishes according to ρ∞ ∼ ρ2q0 when q < 1/2, and as
ρ∞ ∼ ρ0 when q > 1/2. Hence, the jamming density is
significantly enhanced over the initial density only if p
exceeds the critical value pc = 1/2.

A. Discrete Space

Let us consider random sequential adsorption in one
spatial dimension were each deposition event creates two
new smaller gaps. We assume that each of these gaps
remains active with probability p, while with probability
q = 1 − p it becomes passive, i.e., adsorption events no
longer occur on this gap. Initially, the system consists
of randomly distributed monomers with density ρ0, and
all gaps are active. Then, r-mers are deposited with a
temporally constant and spatially homogeneous rate, set
to unity without loss of generality. The deposition events
are successful if and only if all r sites are empty. Below,
we consider the monomer case (r = 1).
Let Ak(t) be the probability of finding an active gap

of size k at time t. This distribution changes according
to

dAk(t)

dt
= 2p

∞
∑

m=k+1

Am(t)− kAk(t). (37)

The loss term reflects that deposition in each of the
empty sites destroys the gap, and the gain term reflects
the fact that two smaller gaps are created in each depo-
sition event. The prefactor of the gain term is equal to
the production rate. Similarly, the probability Pk(t) of
finding a passive gap of size k satisfies

dPk(t)

dt
= 2q

∞
∑

m=k+1

Am(t). (38)

The evolution equations (37)–(38) conserve the total
length

∑

k(k + 1)(Ak + Pk) = 1.
Let us consider systems that initially consist of ran-

domly distributed monomers with all gaps being active,
i.e., Ak(0) = ρ20(1 − ρ0)

k and Pk(0) = 0. Since Pk is

enslaved to Ak, we derive the latter quantity first. The
linear loss rate suggests the exponential ansatz

Ak = αβk (39)

with the initial values α(0) = ρ20 and β(0) = 1 − ρ0.
Substituting (39) into (37) yields

dβ

dt
= −β, d

dt
lnα = 2p

β

1− β
. (40)

The first equation yields β(t) = (1− ρ0)e
−t, and the sec-

ond equation can be conveniently solved by changing the
time variable from t to β using βdt = −dβ. This trans-
forms the second equation into d

dβ lnα = −2p(1 − β)−1.

Integrating this equation subject to the above initial con-
dition yields α = ρ2q0 (1− β)2p. The time-dependent gap
distribution is therefore

Ak = ρ2q0 (1− β)2pβk, β = (1− ρ0)e
−t. (41)

Next, we study the final jamming density which can be
obtained from the active gap distribution by integration
of the overall deposition rate over time, i.e., ρ∞ − ρ0 =
∫∞
0

dt
∑

k kAk(t) =
∫∞
0

dt αβ(1−β)−2. Again, it is useful
to transform t to β. Evaluating the integral gives

ρ∞ =

{

(ρ2q0 − 2qρ0)/(1− 2q) q 6= 1/2;
ρ0 ln(1/ρ0) q = 1/2.

(42)

It is easy to verify that ρ∞ → 1 in the limit q → 0. In the
more interesting limit when the system is initially almost
empty, i.e., when ρ0 → 0, the following leading behaviors
emerge

ρ∞ ∼







ρ2q0 q < 1/2;
ρ0 ln(1/ρ0) q = 1/2;
ρ0 q > 1/2.

(43)

In other words, the final coverage depends algebraically
on the initial coverage in the range q < 1/2. In this
case, the adsorption process can be viewed as “effective”
since the increase in density is significant. Otherwise, the
final density is proportional to the initial density ρ0. The
critical point is marked by a weak logarithmic increase
in the jamming density.
We turn now to the distribution of passive gaps which

is obtained by integrating (38) with Ak(t) given by
Eq. (41). In order to compare the gap-size distribution
with the fragmentation case, we focus on the limiting
(t→∞) distribution of passive gaps, which reads

Pk(∞) = 2qρ2q0
∫ 1−ρ0

0

dβ (1− β)2p−1βk. (44)

In the limit of almost empty initial conditions, ρ0 → 0,
the average gap size diverges as 〈k〉 = (1 − ρ∞)/ρ∞ ∼
ρ−1∞ . Hence, the most interesting behavior emerges in
the scaling region ρ0 → 0 and k → ∞ with the scaling
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variable ξ = kρ0 kept fixed. In this region the limiting
gap distribution (44) can be rewritten in the scaling form

Pk(∞) = 2qρ2q0 k−2pΓ(2p, ξ), (45)

where Γ(a, ξ) =
∫∞
ξ

dxxa−1e−x denotes the incomplete

gamma function. Equation (45) shows that the gap size
distribution behaves algebraically as long as the size of
the gap does not exceed the average initial size k∗ = ρ−10 ,
while for larger gaps the size distribution is suppressed
exponentially

Pk(∞) '
{

2qΓ(2p)ρ2q0 k−2p k ¿ k∗;

2qρ0k
−1e−k/k∗ k À k∗.

(46)

These two expressions are indeed of the same order,
P ∼ ρ20, in the vicinity of the crossover point k ∼ k∗.
In general, we find the algebraic behavior Pk(∞) ∼ k−2p

in the limit ρ0 → 0, in agreement with the stable frag-
ment length density of Eq. (5). This agrees with intuition
since in the limit ρ0 → 0, stochastic RSA is a discrete
counterpart of the stochastic fragmentation.
The above treatment can be generalized to the dimer

(r = 2) case and even to the general r-mer case. Al-
though these solutions become very cumbersome as r
grows, the asymptotic behavior found for the monomer
case including the scaling form of Pk(∞) and the jam-
ming density ρ∞ are not altered.

B. Continuous Space

The continuum limit where particles of unit length are
deposited irreversibly onto a line can be obtained from
the discrete r-mer case by taking the limit r →∞ and by
redefining the time variable rt→ t and the initial density
rρ0 → λ. Then, the densities of active and passive gaps
of size x evolve according to

∂A(x, t)

∂t
= 2p

∫ ∞

x+1

dy A(y, t)− θ(x− 1)(x− 1)A(x, t),

∂P (x, t)

∂t
= 2q

∫ ∞

x+1

dy A(y, t), (47)

where θ(x) is the step function. The initial conditions
read A(x, 0) = λ2e−λx and P (x, 0) = 0.
We first derive the distribution of active gaps of lengths

x ≥ 1. Equation (47) suggests that it remains exponen-
tial throughout the evolution, i.e.,

A(x, t) = Φ(t) exp [−λx− (x− 1)t] . (48)

Substituting this exponential form into Eq. (47) yields
d
dt lnΦ(t) = 2p e−λ−t/(λ+t). Integrating this differential

equation subject to the initial conditions Φ(0) = λ2 gives
the time dependent prefactor

Φ(t) = λ2q(λ+ t)2p exp

[

−2p
∫ λ+t

λ

dτ
1− e−τ

τ

]

. (49)

The jamming density can be obtained by integrating
the total deposition rate over time. We get

ρ∞ =

∫ ∞

0

dt

∫ ∞

1

dx (x− 1)P (x, t),

which simplifies to

ρ∞ = λ2qe−λ

∫ ∞

λ

dt

t2q
exp

[

−2p
∫ t

λ

dτ
1− e−τ

τ

]

. (50)

When p = 1, this expression agrees with the jamming
density of the parking model with and without disorder
[46, 47]. Independent of the probability p, the approach
to the jamming state follows the classical t−1 law [41]

ρ∞ − ρ(t) ' λ2qe−λ(λ+ t)−1 ∼ t−1. (51)

Additionally, the leading behavior in the limit of dilute
initial conditions (λ → 0) can be evaluated and the be-
havior found in Eq. (43) generalizes to the continuum
limit

ρ∞ ∼







λ2q q < 1/2;
λ ln(1/λ) q = 1/2;
λ q > 1/2.

(52)

The limiting passive gap distribution is found by inte-
grating the rate equation (47) using the active gap dis-
tribution

P∞(x) = 2q

∫ ∞

0

dt

λ+ t
Φ(t)e−λ−(λ+t)x, (53)

with Φ(t) given by Eq. (49). In the limit of dilute initial
conditions (λ → 0) one can simplify the integral on the
right-hand side of Eq. (53) to find the following extremal
behaviors of the gap distribution

P∞(x) '







2qλx−1e−λx xÀ λ−1;
2qΓ(2p)λ2qx−2p 1¿ x¿ λ−1;
2q e−2pγEλ2q ln

(

1
λx

)

x¿ 1;
(54)

where γE = 0.577215 . . . denotes the Euler constant. The
first two asymptotics in (54) are straightforward exten-
sions of the corresponding behaviors in the lattice case;
the last line in (54) has been derived from (53) using the
asymptotic relation

∫ T

0

dτ (1− e−τ )/τ = lnT + γE +O
(

e−T
)

.

Finally, we note that even in the long-time limit the
density of active gaps does not vanish for sufficiently
short gaps, x ≤ 1. One can determine A∞(x), and more
generally A(x, t), by employing an elementary relation
between the densities of active and passive gaps, namely

A(x, t) = A(x, 0) +
p

q
P (x, t). (55)
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This relation immediately follows from the master equa-
tions (47), and it clearly holds for arbitrary t as long as
x ≤ 1. By combining (54) and (55) we find

A∞(x) ' 2p e−2pγE λ2q ln

(

1

λx

)

, (56)

which applies if λ¿ 1 and x¿ 1.
Therefore, stochastic fragmentation processes can be

naturally extended to adsorption processes, and apart
from numeric prefactors the algebraic fragment-size dis-
tribution is reproduced in the limit of empty initial con-
ditions. The phase transition underlying the branching
process has an interesting implication. The jamming den-
sity is significantly larger than the initial density only
when p > 1/2. The super-critical nature of the under-
lying branching process allows for an infinite number of
fragments produced from a single fragment, and this ex-
plains the enhanced jamming density in the stochastic
RSA process.
Although the fragmentation and the adsorption results

are closely related, we have used two complementary ap-
proaches to obtain them. In the former case, it was con-
venient to bypass the distribution of unstable fragments
and solve directly for the final stable fragment distribu-
tion, while in the latter case, it was more natural to study
the entire time dependent behavior of both distributions.
A more complete treatment of the fragmentation process
is of course possible using a continuous time formulation
which utilizes rate equations similar to (47).

VI. SUMMARY

We have studied a class of stochastic fragmentation
processes, where fragments may become stable (“frozen”)

after each fragmentation event. We have found that in
general, these processes are characterized by an algebraic
small-size divergence of the fragment size distribution.
This behavior is robust as it holds for size dependent
fragmentation densities and fragmentation probabilities,
as well as in dual adsorption processes in both continuous
and discrete space. The corresponding power-law expo-
nents can be tuned by varying the fragmentation proba-
bility, and the entire range allowed by mass conservation
may be realized.

While the size density can be determined analytically,
additional statistical measures of fluctuations are more
difficult to handle. Nevertheless, we have shown that mo-
ments of the distribution exhibit large sample-to-sample
fluctuations, and hence, knowledge of the entire distribu-
tion of observables is needed to characterize the system.
Additionally, the distribution of the moments and of ex-
tremal characteristics, such as the longest and the short-
est fragments, possesses an infinite set of singularities.

Lack of self-averaging is important in practical applica-
tions such as utilization of DNA segmentation for com-
parison of genomes of different species. Great care is
clearly needed in comparative analysis of the segment
length distributions as observed deviations between seg-
ments may be actually statistical rather than biological.
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